3.13.79 \(\int \frac {\sqrt {\cos (c+d x)} (a A+(A b+a B) \sec (c+d x)+b B \sec ^2(c+d x))}{\sqrt {a+a \sec (c+d x)}} \, dx\) [1279]

Optimal. Leaf size=184 \[ \frac {2 b B \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{\sqrt {a} d}-\frac {\sqrt {2} (a-b) (A-B) \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{\sqrt {a} d}+\frac {2 a A \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}} \]

[Out]

2*b*B*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d/a^(1/2)-(a-b)*(A-
B)*arctanh(1/2*sin(d*x+c)*a^(1/2)*sec(d*x+c)^(1/2)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))*2^(1/2)*cos(d*x+c)^(1/2)*se
c(d*x+c)^(1/2)/d/a^(1/2)+2*a*A*sin(d*x+c)/d/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.41, antiderivative size = 184, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 54, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {4350, 4171, 4108, 3893, 212, 3886, 221} \begin {gather*} -\frac {\sqrt {2} (a-b) (A-B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{\sqrt {a} d}+\frac {2 a A \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \sec (c+d x)+a}}+\frac {2 b B \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{\sqrt {a} d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Sqrt[Cos[c + d*x]]*(a*A + (A*b + a*B)*Sec[c + d*x] + b*B*Sec[c + d*x]^2))/Sqrt[a + a*Sec[c + d*x]],x]

[Out]

(2*b*B*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/(Sqrt[a
]*d) - (Sqrt[2]*(a - b)*(A - B)*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c +
d*x]])]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/(Sqrt[a]*d) + (2*a*A*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]*Sqrt[a
 + a*Sec[c + d*x]])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt[a])]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 3886

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*(a/(b
*f))*Sqrt[a*(d/b)], Subst[Int[1/Sqrt[1 + x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; Free
Q[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]

Rule 3893

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*b*(d/
(a*f)), Subst[Int[1/(2*b - d*x^2), x], x, b*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]))], x
] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 4108

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Dist[(A*b - a*B)/b, Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n, x], x] + Dist[B
/b, Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A
*b - a*B, 0] && EqQ[a^2 - b^2, 0]

Rule 4171

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*
Csc[e + f*x])^n/(f*n)), x] - Dist[1/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m -
b*B*n - b*(A*(m + n + 1) + C*n)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, m}, x] && EqQ[a^2 -
 b^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -2^(-1)] || EqQ[m + n + 1, 0])

Rule 4350

Int[(cos[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cos[a + b*x])^m*(c*Sec[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Sec[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps

\begin {align*} \int \frac {\sqrt {\cos (c+d x)} \left (a A+(A b+a B) \sec (c+d x)+b B \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {a A+(A b+a B) \sec (c+d x)+b B \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)}} \, dx\\ &=\frac {2 a A \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}}+\frac {\left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)} \left (\frac {1}{2} a (A b-a (A-B))+\frac {1}{2} a b B \sec (c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx}{a}\\ &=\frac {2 a A \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}}-\left ((a-b) (A-B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+a \sec (c+d x)}} \, dx+\frac {\left (b B \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \, dx}{a}\\ &=\frac {2 a A \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}}+\frac {\left (2 (a-b) (A-B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}-\frac {\left (2 b B \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1+\frac {x^2}{a}}} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{a d}\\ &=\frac {2 b B \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{\sqrt {a} d}-\frac {\sqrt {2} (a-b) (A-B) \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{\sqrt {a} d}+\frac {2 a A \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.45, size = 137, normalized size = 0.74 \begin {gather*} \frac {\left (2 a A \sqrt {1-\sec (c+d x)}-2 b B \text {ArcSin}\left (\sqrt {\sec (c+d x)}\right ) \sqrt {\sec (c+d x)}+\sqrt {2} (a-b) (A-B) \text {ArcTan}\left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \sqrt {\sec (c+d x)}\right ) \sin (c+d x)}{d \sqrt {-1+\cos (c+d x)} \sqrt {a (1+\sec (c+d x))}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[Cos[c + d*x]]*(a*A + (A*b + a*B)*Sec[c + d*x] + b*B*Sec[c + d*x]^2))/Sqrt[a + a*Sec[c + d*x]],
x]

[Out]

((2*a*A*Sqrt[1 - Sec[c + d*x]] - 2*b*B*ArcSin[Sqrt[Sec[c + d*x]]]*Sqrt[Sec[c + d*x]] + Sqrt[2]*(a - b)*(A - B)
*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[c + d*x]]]*Sqrt[Sec[c + d*x]])*Sin[c + d*x])/(d*Sqrt[-1 + Co
s[c + d*x]]*Sqrt[a*(1 + Sec[c + d*x])])

________________________________________________________________________________________

Maple [A]
time = 0.25, size = 283, normalized size = 1.54

method result size
default \(\frac {\sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (-1+\cos \left (d x +c \right )\right ) \left (-2 A \sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, a -B \sqrt {2}\, \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (-1-\cos \left (d x +c \right )+\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right ) b -B \sqrt {2}\, \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (1+\cos \left (d x +c \right )+\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right ) b +2 A \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}\right ) a -2 A \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}\right ) b -2 B \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}\right ) a +2 B \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}\right ) b \right ) \left (\sqrt {\cos }\left (d x +c \right )\right )}{d a \sin \left (d x +c \right )^{2} \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}\) \(283\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*A+(A*b+B*a)*sec(d*x+c)+b*B*sec(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2),x,method=_RETURNVERBOS
E)

[Out]

1/d*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)*(-1+cos(d*x+c))*(-2*A*sin(d*x+c)*(-2/(1+cos(d*x+c)))^(1/2)*a-B*2^(1/2)
*arctan(1/4*(-2/(1+cos(d*x+c)))^(1/2)*(-1-cos(d*x+c)+sin(d*x+c))*2^(1/2))*b-B*2^(1/2)*arctan(1/4*(-2/(1+cos(d*
x+c)))^(1/2)*(1+cos(d*x+c)+sin(d*x+c))*2^(1/2))*b+2*A*arctan(1/2*sin(d*x+c)*(-2/(1+cos(d*x+c)))^(1/2))*a-2*A*a
rctan(1/2*sin(d*x+c)*(-2/(1+cos(d*x+c)))^(1/2))*b-2*B*arctan(1/2*sin(d*x+c)*(-2/(1+cos(d*x+c)))^(1/2))*a+2*B*a
rctan(1/2*sin(d*x+c)*(-2/(1+cos(d*x+c)))^(1/2))*b)*cos(d*x+c)^(1/2)/a/sin(d*x+c)^2/(-2/(1+cos(d*x+c)))^(1/2)

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 890 vs. \(2 (155) = 310\).
time = 0.76, size = 890, normalized size = 4.84 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*A+(A*b+B*a)*sec(d*x+c)+b*B*sec(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="ma
xima")

[Out]

-1/2*((sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - sqrt(2)*log
(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1) - 4*sqrt(2)*sin(1/2*d*x + 1/2*c
))*A*sqrt(a) - (sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - sq
rt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*B*sqrt(a) - (sqrt(2)*
log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - sqrt(2)*log(cos(1/2*d*x +
1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*A*b/sqrt(a) + (sqrt(2)*log(cos(1/3*arctan2(si
n(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2
+ 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1) - sqrt(2)*log(cos(1/3*arctan2(sin(3/2*d*
x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 - 2*sin(
1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1) - log(2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), co
s(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sqrt(2)*cos(1/3*
arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2*sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2
*d*x + 3/2*c))) + 2) + log(2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan
2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x
 + 3/2*c))) - 2*sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2) - log(2*cos(1/3*arct
an2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2
*c)))^2 - 2*sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2*sqrt(2)*sin(1/3*arctan2(s
in(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2) + log(2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3
/2*c)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 - 2*sqrt(2)*cos(1/3*arctan2(sin(3
/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 2*sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)
)) + 2))*B*b/sqrt(a))/d

________________________________________________________________________________________

Fricas [A]
time = 3.21, size = 553, normalized size = 3.01 \begin {gather*} \left [\frac {4 \, A a \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + {\left (B b \cos \left (d x + c\right ) + B b\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 4 \, \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} {\left (\cos \left (d x + c\right ) - 2\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 7 \, a \cos \left (d x + c\right )^{2} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + \frac {\sqrt {2} {\left ({\left (A - B\right )} a^{2} - {\left (A - B\right )} a b + {\left ({\left (A - B\right )} a^{2} - {\left (A - B\right )} a b\right )} \cos \left (d x + c\right )\right )} \log \left (-\frac {\cos \left (d x + c\right )^{2} + \frac {2 \, \sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{\sqrt {a}} - 2 \, \cos \left (d x + c\right ) - 3}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right )}{\sqrt {a}}}{2 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}}, \frac {2 \, A a \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + \sqrt {2} {\left ({\left (A - B\right )} a^{2} - {\left (A - B\right )} a b + {\left ({\left (A - B\right )} a^{2} - {\left (A - B\right )} a b\right )} \cos \left (d x + c\right )\right )} \sqrt {-\frac {1}{a}} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {-\frac {1}{a}} \sqrt {\cos \left (d x + c\right )}}{\sin \left (d x + c\right )}\right ) + {\left (B b \cos \left (d x + c\right ) + B b\right )} \sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) - 2 \, a}\right )}{a d \cos \left (d x + c\right ) + a d}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*A+(A*b+B*a)*sec(d*x+c)+b*B*sec(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="fr
icas")

[Out]

[1/2*(4*A*a*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) + (B*b*cos(d*x + c) + B*b)
*sqrt(a)*log((a*cos(d*x + c)^3 - 4*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*(cos(d*x + c) - 2)*sqrt(cos
(d*x + c))*sin(d*x + c) - 7*a*cos(d*x + c)^2 + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) + sqrt(2)*((A - B)*a^2
- (A - B)*a*b + ((A - B)*a^2 - (A - B)*a*b)*cos(d*x + c))*log(-(cos(d*x + c)^2 + 2*sqrt(2)*sqrt((a*cos(d*x + c
) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/sqrt(a) - 2*cos(d*x + c) - 3)/(cos(d*x + c)^2 + 2*cos(d*x
 + c) + 1))/sqrt(a))/(a*d*cos(d*x + c) + a*d), (2*A*a*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c
))*sin(d*x + c) + sqrt(2)*((A - B)*a^2 - (A - B)*a*b + ((A - B)*a^2 - (A - B)*a*b)*cos(d*x + c))*sqrt(-1/a)*ar
ctan(sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(-1/a)*sqrt(cos(d*x + c))/sin(d*x + c)) + (B*b*cos(d*
x + c) + B*b)*sqrt(-a)*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x +
c)/(a*cos(d*x + c)^2 - a*cos(d*x + c) - 2*a)))/(a*d*cos(d*x + c) + a*d)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (A + B \sec {\left (c + d x \right )}\right ) \left (a + b \sec {\left (c + d x \right )}\right ) \sqrt {\cos {\left (c + d x \right )}}}{\sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*A+(A*b+B*a)*sec(d*x+c)+b*B*sec(d*x+c)**2)*cos(d*x+c)**(1/2)/(a+a*sec(d*x+c))**(1/2),x)

[Out]

Integral((A + B*sec(c + d*x))*(a + b*sec(c + d*x))*sqrt(cos(c + d*x))/sqrt(a*(sec(c + d*x) + 1)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*A+(A*b+B*a)*sec(d*x+c)+b*B*sec(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="gi
ac")

[Out]

integrate((B*b*sec(d*x + c)^2 + A*a + (B*a + A*b)*sec(d*x + c))*sqrt(cos(d*x + c))/sqrt(a*sec(d*x + c) + a), x
)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\sqrt {\cos \left (c+d\,x\right )}\,\left (A\,a+\frac {A\,b+B\,a}{\cos \left (c+d\,x\right )}+\frac {B\,b}{{\cos \left (c+d\,x\right )}^2}\right )}{\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(c + d*x)^(1/2)*(A*a + (A*b + B*a)/cos(c + d*x) + (B*b)/cos(c + d*x)^2))/(a + a/cos(c + d*x))^(1/2),x)

[Out]

int((cos(c + d*x)^(1/2)*(A*a + (A*b + B*a)/cos(c + d*x) + (B*b)/cos(c + d*x)^2))/(a + a/cos(c + d*x))^(1/2), x
)

________________________________________________________________________________________